DATA QUERY LANGUAGES

\square Query languages, often known as DQLs or Data Query Languages, are computer languages that are used to make various queries in information systems and databases.A query language is a language in which user requests information from the database.Procedural Query Language: User instructs the system to perform a sequence of operations on the database to compute the desired result.
For Example: Relational algebra
Structure Query language (SQL) is based on relational algebra.
\square Non-procedural Query Language: Information is retrieved from the database without specifying the sequence of operation to be performed. Users only specify what information is to be retrieved.
For Example: Relational Calculus

Query by Example (QBE) is based on Relational calculus

RELATIONAL ALGEBRA

Relational Algebra came in 1970 and was given by Edgar F. Codd (Father of DBMS). It is also known as Procedural Query Language(PQL) as in PQL, a programmer/user has to mention two things, "What to Do" and "How to Do".
\square Relational algebra: It is a collection of operations to manipulate relations.
\square Relational Algebra is a procedural query language. It consists of a set of operations that take one or two relations a input and produce a new relation as their result.
\square It specifies the operations to be performed on existing relations to derive the result relations.
\square Relational Algebra are usually divided into two groups.

- Mathematical Set Operations e.g. Union, Intersection, Set Difference, Cartesian Product.
- Relational Database Operations e.g. Select, Project, Rename, Join, Assignment.

RELATIONAL ALGEBRA

RELATIONAL ALGEBRA

- Select: It returns a relation containing all tuples from specified relation that satisfy a condition.
- Project: It returns a relation containing all tuples that remain in a specified relation after specified attributes have been removed.
- Product: It returns a new relation that is an outcome of concatenation (that is chaining) of each tuple of one relation with each tuple of another relation.
- Join: It returns a relation containing all possible tuples that are a combination of two tuples, one from each of two specified relations such as the two tuples contributing to a given combination have a common value for the common attributes of the two relations.
U Union: It returns a relation containing all tuples that appear in either or both of two specified relations.
Intersect: It returns a relation containing all tuples that appear in both of two specified relations.
Difference: It returns a relation containing all tuples that appear in the first not in second of the two specified relations.
Divide: The division operator is used when we have to evaluate queries which contain the keyword 'all'. It permits to find values in an attribute of R that have all values of S in the attribute of the same name.

RELATIONAL ALGEBRA

Project

Union
Intersection
Difference

RELATIONAL ALGEBRA

Select Operator (σ): It returns a relation containing all tuples from specified relation that satisfy a condition. It is denoted by sigma (σ).
\square Syntax: $\sigma_{p}(R)$
$\boldsymbol{\sigma}$ is used for selection prediction
\mathbf{R} is used for relation
\mathbf{p} is used as a propositional logic formula which may use connectors like: AND (\wedge), OR (\vee), NOT
(!). These relational can use as relational operators like $=, \neq, \geq,<,>, \leq$.
\square Examples-

- Select tuples from a relation "Books" where subject is "database"
$\sigma_{\text {subject }}=$ "database" $($ Books $)$
- Select tuples from a relation "Books" where subject is "database" and price is "450"

$$
\sigma_{\text {subject }}=\text { "database" } \wedge \text { price }=" 450 "(\text { Books })
$$

- Select tuples from a relation "Books" where subject is "database" and price is "450" or have a publication year after 2010

$$
\sigma_{\text {subject }}=\text { "database" } \wedge \text { price }=\text { " } 450 " \geqslant \text { year >"2010" }(\text { Books })
$$

RELATIONAL ALGEBRA

Points to be remembered for Select operator

\square We may use logical operators like \wedge, \vee, ! and relational operators like $=, \neq,>,<,<=,>=$ with the selection condition.Selection operator only selects the required tuples according to the selection condition.Selection operator always selects the entire tuple. It can not select a section or part of a tuple.
\square Selection operator is commutative in nature i.e.

$$
\sigma_{A \wedge B}(R)=\sigma_{B \wedge A}(R)
$$

Degree of the relation from a selection operation is same as degree of the input relation.
\square The number of rows returned by a selection operation is obviously less than or equal to the number of rows in the original table.
Thus,
Minimum Cardinality $=0$
Maximum Cardinality $=|R|$

RELATIONAL ALGEBRA

Project Operator (π) is a unary operator in relational algebra that performs a projection operation.
It displays the columns of a relation or table based on the specified attributes.
Syntax: $\pi_{\text {<attribute list> }}(R)$

- Example-

Consider the following Student relation

ID	Name	Subject	Age
100	Ashish	Maths	19
200	Rahul	Science	20
300	Naina	Physics	20
400	Sameer	Chemistry	21

$\pi_{\text {Name, Age }}$ (Student)	Name	Age	$\Pi_{\text {ID , Name }}$ (Student)	ID	Name
	Ashish	19		100	Ashish
	Rahul	20		200	Rahul
	Naina	20		300	Naina
	Sameer	21		400	Sameer

RELATIONAL ALGEBRA

Points to be remembered for Project Operator

- The degree of output relation (number of columns present) is equal to the number of attributes mentioned in the attribute list.
- Projection operator automatically removes all the duplicates while projecting the output relation. So, cardinality of the original relation and output relation may or may not be same. If there are no duplicates in the original relation, then the cardinality will remain same otherwise it will surely reduce.
If attribute list is a super key on relation R, then we will always get the same number of tuples in the output relation. This is because then there will be no duplicates to filter.
- Projection operator does not obey commutative property i.e.

$$
\pi_{\text {<list } 2>}\left(\pi_{\text {<list } 1>}(\mathrm{R})\right) \neq \pi_{\text {<list } 1>}\left(\pi_{\text {<list2> }}(\mathrm{R})\right)
$$

\square Selection Operator performs horizontal partitioning of the relation. Projection operator performs vertical partitioning of the relation.
T There is only one difference between Project and Select operation of SQL. Projection operator does not allow duplicates while SELECT operation allows duplicates. To avoid duplicates in SQL, we use "distinct" keyword and write SELECT distinct. Thus, projection operator of relational algebra is equivalent to SELECT operation of SQL.

RELATIONAL ALGEBRA

Product: The Cartesian product is used to combine each row in one table with each row in the other table. It is also known as a cross product. It is denoted by X .

Syntax: RXS

- Example-

Consider the following relations

Employee			
DEPT_NO		DEPT_NAME	
A		Marketing	
B		Sales	
C		Legal	
Department			
EMP_ID	EMP	NAME	EMP_DEPT
1			A
2			C
3			B

Employee X Department				
EMP_ID	EMP_NAME	EMP_DEPT	DEPT_NO	DEPT_NAME
1	Smith	A	A	Marketing
1	Smith	A	B	Sales
1	Smith	A	C	Legal
2	Harry	C	A	Marketing
2	Harry	C	B	Sales
2	Harry	C	C	Legal
3	John	B	A	Marketing
3	John	B	B	Sales
3	John	B	C	Legal

RELATIONAL ALGEBRA

\square Union Operator (U): It returns a relation containing all tuples that appear in either or both of two specified relations.
Let R and S be two relations.
Then-

- $R \cup S$ is the set of all tuples belonging to either R or S or both.
- In R U S, duplicates are automatically removed.
- Union operation is both commutative and associative.
- Example-

Consider the following two relations R and S

Relation R		
ID	Name	Subject
100	Ankit	English
200	Pooja	Maths
300	Komal	Science

Relation S

ID	Name	Subject
100	Ankit	English
400	Kajol	French

Relation $R \cup S$

ID	Name	Subject
100	Ankit	English
200	Pooja	Maths
300	Komal	Science
400	Kajol	French

RELATIONAL ALGEBRA

\square Intersection Operator (n): It returns a relation containing all tuples that appear in both of two specified relations.
Let R and S be two relations.
Then-

- $R \cap S$ is the set of all tuples belonging to both R and S.
- In $\mathrm{R} \cap \mathrm{S}$, duplicates are automatically removed.
- Intersection operation is both commutative and associative.
\square Example-
Consider the following two relations R and S

Relation R		
ID	Name	Subject
100	Ankit	English
200	Pooja	Maths
300	Komal	Science

Relation S		
ID	Name	Subject
100	Ankit	English
400	Kajol	French

Relation R $\cap \mathbf{S}$		
ID	Name	Subject
100	Ankit	English

RELATIONAL ALGEBRA

\square Difference Operator (-): It returns a relation containing all tuples that appear in the first not in second of the two specified relations.
Let R and S be two relations.
Then-

- $R-S$ is the set of all tuples belonging to R and not to S.
- In R - S, duplicates are automatically removed.
- Difference operation is associative but not commutative.
\square Example-
Consider the following two relations R and S

Relation R		
ID	Name	Subject
100	Ankit	English
200	Pooja	Maths
300	Komal	Science

Relation S		
ID	Name	Subject
100	Ankit	English
400	Kajol	French

Relation R-S		
ID	Name	Subject
200	Pooja	Maths
300	Komal	Science

RELATIONAL ALGEBRA

\square Division Operation is represented by "division"(\div or $/$) operator and is used in queries that involve keywords "every", "all", etc.
Syntax : R(X,Y)/S(Y)
Here,

- R is the first relation from which data is retrieved.
- S is the second relation that will help to retrieve the data.
- X and Y are the attributes/columns present in relation. We can have multiple attributes in relation, but keep in mind that attributes of S must be a proper subset of attributes of R.
- For each corresponding value of Y, the above notation will return us the value of X from tuple<X,Y> which exists everywhere.
\square It's a bit difficult to understand this in a theoretical way, but you will understand this with an example.
\square Let's have two relations, ENROLLED and COURSE. ENROLLED consist of two attributes STUDENT_ID and COURSE_ID. It denotes the map of students who are enrolled in given courses.
\square COURSE contains the list of courses available.
\square See, here attributes/columns of COURSE relation are a proper subset of attributes/columns of ENROLLED relation. Hence Division operation can be used here.

RELATIONAL ALGEBRA

Query 1: STUDENT_ID of students who are enrolled in every course.
ENROLLED(STUDENT_ID, COURSE_ID) \div COURSE(COURSE_ID)

Query 2: Retrieve the name of subject that is taught in all courses.
SUBJECT(NAME, COURSE) \div COURSE(COURSE)

RELATIONAL ALGEBRA

\square Join Operation: It returns a relation containing all possible tuples that are a combination of two tuples, one from each of two specified relations such as the two tuples contributing to a given combination have a common value for the common attributes of the two relations.
\square Join Operation in DBMS are binary operations that allow us to combine two or more relations.
They are further classified into two types: Inner Join, and Outer Join.

RELATIONAL ALGEBRA

Inner Join: When we perform Inner Join, only those tuples returned that satisfy the certain condition. It is also classified into three types: Theta Join, Equi Join and Natural Join.
\square Theta Join (θ): Theta Join combines two relations using a condition. This condition is represented by the symbol "theta" (θ). Here conditions can be inequality conditions such as $>,<,>=,<=$, etc. Notation : $R \bowtie_{\theta} S$, Where R is the first relation, S is the second relation, and θ is the condition.

Let there be a database of all the class 12th boys students in a school. Let's understand Theta Join with the Boys and Interest tables used above :
inner join

Boys

ID	Name	Percentage \%
1	Rohan	56
2	Rohit	85
3	Amit	75
4	Ravi	79
5	Saiz	65
6	Tejan	84
7	Rishabh	75

Interest

ID	Name	Gender	Sport
3	Amit	M	Cricket
23	Aman	M	Chess
5	Saiz	M	Cricket
10	Shreya	F	Badminton
6	Tejan	M	Chess
15	Sakshi	F	Chess
2	Rohit	M	Cricket

RELATIONAL ALGEBRA

Theta Join -

Boys \bowtie (Boys.ID = Interest.ID and Interest.Sport = Chess and Boys.Percentage $>$ 70) Interest
So the condition here is
Boys.ID $=$ Interest.ID and Interest.Sport $=$ Chess and Boys.Percentage >70
so while performing join, we will have to check this condition every time two rows are joined.
Boys

ID	Name	Percentage \%					
1	Rohan	56					
2	Rohit	85					
3	Amit	75					
4	Ravi	79					
5	Saiz	65					
6	Tejan	84					
7	Rishabh	75		ID	Name	Gender	Sport
:---:	:---:	:---:	:---:	:---:			
3	Amit	M	Cricket				
23	Aman	M	Chess				
5	Saiz	M	Cricket				
10	Shreya	F	Badminton				
6	Tejan	M	Chess				
15	Sakshi	F	Chess				
2	Rohit	M	Cricket				

Boys $\bowtie \theta$ Interest

ID	Name	Percentage	Gender	Sport
2	Rohit	85	M	Cricket
3	Amit	75	M	Cricket
6	Tejan	84	M	Chess

RELATIONAL ALGEBRA

Equi join is same as Theta Join, but the only condition is it only uses equivalence condition while performing join between two tables.
$\mathrm{A} \bowtie(\ldots=\ldots) \mathrm{B}$, where $(\ldots=\ldots)$ is the equivalence condition on any of the attributes of the joining table. In the above example, what if we are told to find out all the students of class 12th who have interest in chess only?

We can perform Equi join as :
Equi join: Boys \bowtie (Boys.ID = Interset.ID and Interest.Sport = Chess) Interest
Result after performing Equi join:

Boys

ID	Name	Percentage \%
1	Rohan	56
2	Rohit	85
3	Amit	75
4	Ravi	79
5	Saiz	65
6	Tejan	84
7	Rishabh	75

Interest

ID	Name	Gender	Sport
3	Amit	M	Cricket
23	Aman	M	Chess
5	Saiz	M	Cricket
10	Shreya	F	Badminton
6	Tejan	M	Chess
15	Sakshi	F	Chess
2	Rohit	M	Cricket

Boys $\bowtie_{(\ldots . .=\ldots)}$ Interest

ID	Name	Percentage	Gender	Sport
6	Tejan	84	M	Chess

RELATIONAL ALGEBRA

Natural Join is also considered a type of inner join but it does not use any comparison operator for join condition. It joins the table only when the two tables have at least one common attribute with same name and domain.
In the result of the Natural Join the common attribute only appears once.
It will be more clear with help of an example :
What if we are told to find all the Students of class 12th and their sports interest we can apply Natural Join as: Boys \bowtie Interest
So when we perform Natural Join on table Boys and table Interest they both have a common attribute ID and have the same domain. So, the Result of Natural Join will be:

ID	Name	Percentage \%
1	Rohan	56
2	Rohit	85
3	Amit	75
4	Ravi	79
5	Saiz	65
6	Tejan	84
7	Rishabh	75

Interest			
3	Name	Gender	Sport
23	Amit	M	Cricket
5	Saiz	M	Chess
10	Shreya	F	Badminton
6	Tejan	M	Chess
15	Sakshi	F	Chess
2	Rohit	M	Cricket

Boys \bowtie Interest

ID	Name	Percentage	Gender	Sport
2	Rohit	85	M	Cricket
3	Amit	75	M	Chess
5	Saiz	65	M	Cricket
6	Tejan	84	M	Chess

RELATIONAL ALGEBRA

Outer Join

Outer Join in Relational algebra returns all the attributes of both the table depending on the condition. If some attribute value is not present for any one of the tables it returns NULL in the respective row of the table attribute.
It is further classified as:
Left Outer Join
Right Outer Join
Full Outer Join
Let's see how these Joins are performed.

Left Outer Join

It returns all the rows of the left table even if there is no matching row for it in the right table performing Left Outer Join.
$A D B$
Let's perform Left Outer Join on table Boys and Interest and find out all the boys of class 12th and their sports interest.

RELATIONAL ALGEBRA

If we perform Left Outer Join on table Boys and table Interest such that Boys.ID = Interest.ID . Then Result of the Join will be:

Boys \triangle Interest

ID	Name	Percentage \%
1	Rohan	56
2	Rohit	85
3	Amit	75
4	Ravi	79
5	Saiz	65
6	Tejan	84
7	Rishabh	75

ID	Name	Gender	Sport
3	Amit	M	Cricket
23	Aman	M	Chess
5	Saiz	M	Cricket
10	Shreya	F	Badminton
6	Tejan	M	Chess
15	Sakshi	F	Chess
2	Rohit	M	Cricket

Boys.ID	Boys.Name	Boys.Percentage	Interest.ID	Interest.Name	Interest.Gender	Interest.Sport
1	Rohan	56	NULL	NULL	NULL	NULL
2	Rohit	85	2	Rohit	M	Cricket
3	Amit	75	3	Amit	M	Cricket
4	Ravi	79	NULL	NULL	NULL	NULL
5	Saiz	65	5	Saiz	M	Cricket
6	Tejan	84	6	Tejan	M	Chess
7	Rishabh	75	NULL	NULL	NULL	NULL

RELATIONAL ALGEBRA

Right Outer Join

It returns all the rows of the second table even if there is no matching row for it in the first table performing Right Outer Join.

$A \bowtie B$

Let's perform Right Outer Join on table Boys and Interest and find out all the boys of class 12th and their sports interest. If we perform Right Outer Join on table Boys and table Interest such that Boys.ID = Interest.ID. Then Result of the join will be:

RIGHT OUTER JOIN

RELATIONAL ALGEBRA

If we perform Right Outer Join on table Boys and table Interest such that Boys.ID = Interest.ID . Then Result of the join will be:

Boys \bowtie Interest

ID	Name	Percentage \%
1	Rohan	56
2	Rohit	85
3	Amit	75
4	Ravi	79
5	Saiz	65
6	Tejan	84
7	Rishabh	75

ID	Name	Gender	Sport
3	Amit	M	Cricket
23	Aman	M	Chess
5	Saiz	M	Cricket
10	Shreya	F	Badminton
6	Tejan	M	Chess
15	Sakshi	F	Chess
2	Rohit	M	Cricket

Boys.ID	Boys.Name	Boys.Percentage	Interest.ID	Interest.Name	Interest.Gender	Interest.Sport
3	Amit	75	3	Amit	M	Cricket
NULL	NULL	NULL	23	Aman	M	Chess
5	Saiz	65	5	Saiz	M	Cricket
NULL	NULL	NULL	10	Shreya	F	Badminton
6	Tejan	84	6	Tejan	M	Chess
NULL	NULL	NULL	15	Sakshi	F	Chess
2	Rohit	85	2	Rohit	M	Cricket

Clearly, we can observe that all the rows of the right table, i.e., table Interest is present in the result.

RELATIONAL ALGEBRA

Full Outer Join

It returns all the rows of the first and second Table. A D B

ID	Name	Percentage \%	ID	Name	Gender	Sport
1	Rohan	56	85	75	Amit	M
2	Rohit	Cricket				
23	Aman	M	Chess			
3	Amit	5	Saiz	M	Cricket	
4	Ravi	79	10	Shreya	F	Badminton
5	Saiz	65	6	Tejan	M	Chess
6	Tejan	84	15	Sakshi	F	Chess
7	Rishabh	75	2	Rohit	M	Cricket

Boys D Interest

FULL OUTER JOIN

Boys.ID	Boys.Name	Boys.Percentage	Interest.ID	Interest.Name	Interest.Gender	Interest.Sport
1	Rohan	56	NULL	NULL	NULL	NULL
2	Rohit	85	2	Rohit	M	Cricket
3	Amit	75	3	Amit	M	Cricket
4	Ravi	79	NULL	NULL	NULL	NULL
5	Saiz	65	5	Saiz	M	Cricket
6	Tejan	84	6	Tejan	M	Chess
7	Rishabh	75	NULL	NULL	NULL	NULL
NULL	NULL	NULL	23	Aman	M	Chess
NULL	NULL	NULL	10	Shreya	F	Badminton
NULL	NULL	NULL	15	Sakshi	F	Chess

Clearly, we can observe that all the rows of the right table and left Table, i.e., Table B and A are present in the result.

